

15. Boycott Effect

Co-funded by the Erasmus+ Programme of the European Union If particles are suspended in a liquid that has a lower density than the particles, the particles will settle to the bottom of the container.

> The rate of settling can be affected by tilting the container that holds the liquid.

Explain this phenomenon and investigate the effect of relevant parameters.

Tereza Zuskinová, FMFI UK

The effect

https://www.youtube.com/watch?v=8zjixDxTEN8

Origins of the effect (1920)

Original article: https://www.nature.com/articles/104532b0

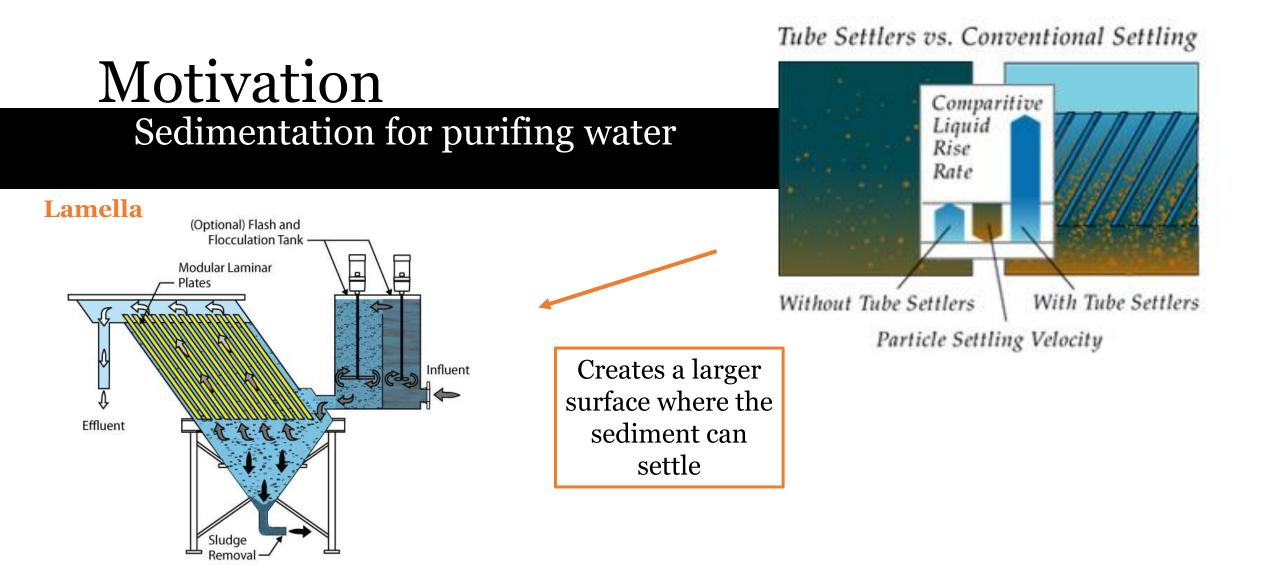
Sedimentation of Blood Corpuscles.

I HAVE noticed lately that if oxalated or defibrinated blood is put to stand in narrow tubes, the corpuscles sediment a good deal faster if the tube is inclined than when it is vertical. Thus with tubes about 2.7 mm. internal diameter there were, after 20 hours, 4, 23, 35, and 42 per cent. of clear serum with tubes inclined at 0° , $22\frac{10}{2}$, 45° , and $67\frac{10}{2}$ respectively. In another rough experiment with tubes of different diameters, all filled to a height of 40 mm. with diluted blood, after 5 hours there were the following proportions of clear serum :—

mm. diam.			Vertical Per cent.	11 ¹⁰ Per cent.	2220 Per cent.	33 20 Per cent.
2.7		•••	6	20	29	51
8		• • •	5	10	15	2 I
14	•••		4	5	9	12

The phenomenon seems to depend on the *vertical* height of the columns of blood, and it occurs to me that the slight Brownian movement of the lower corpuscles may interfere with the sedimentation of those above. But I should be glad if someone would tell me the explanation : the phenomenon is perhaps well known in some other form. A. E. BOYCOTT.

Medical School, University College Hospital, W.C.

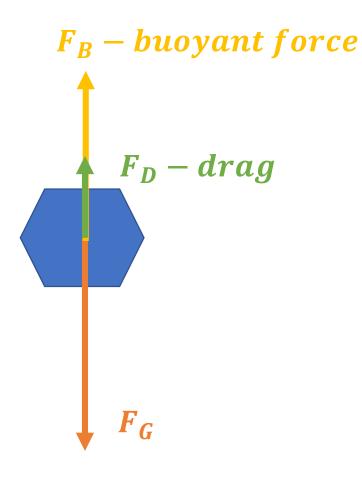

English medical scientist A. Boycott was studying the sedimentation of erythrocytes Origin Nevskii, Y. A., & Osiptsov, A. N. (2011). Slow gravitational convection of disperse systems in domains with inclined boundaries. Fluid Dynamics, 46(2), 225–239.

Sedimentation of Blood Corpuscles.

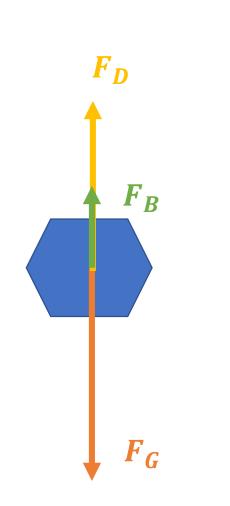
The origins of the development of *vortex zones*, the *division in* the particle *concentration* field, and the influence of these factors on the effective admixture settling velocity in closed vessels are still not completely understood...

20)

The phenomenon seems to depend on the vertical height of the columns of blood, and it occurs to me that the slight Brownian movement of the lower corpuscles may interfere with the sedimentation of those above. But I should be glad if someone would tell me the explanation : the phenomenon is perhaps well known in some other form. A. E. BOYCOTT. Medical School, University College Hospital, W.C.


https://www.monroeenvironmental.com/wp-content/uploads/verticalclarifier-pyramidal-design.jpg

https://water.mecc.edu/exam_prep/TubeSettlers.htm


Basic explanation

Without tilt

Force analysis

In order to start to fall $F_G > F_B + F_D$

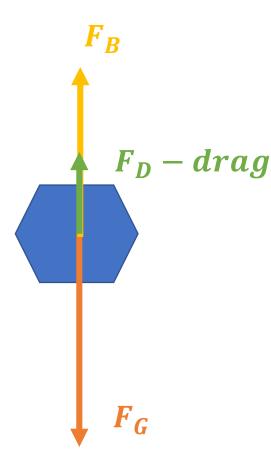
Gravitational force:
$$F_G = mg = \rho Vg$$

Relevant parameter: MATERIAL -> DENSITY Relevant parameter: VOLUME

$$\rho_{sand} \approx 1.442 \, g/cm^3 > \rho_{water} = 1 \, g/cm^3$$

If particles are suspended in a liquid that has a lower density than the particles, the particles will settle to the bottom of the container.

The rate of settling can be affected by tilting the container that holds the liquid.

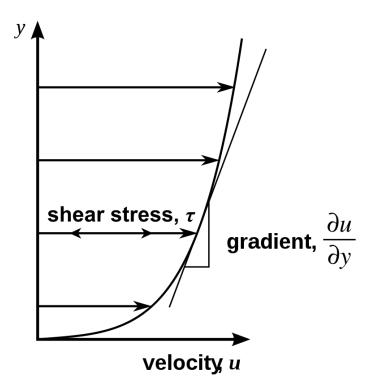

Explain this phenomenon and investigate the effect of relevant parameters.

Materials

What to use?

- Sand, coffee grounds, glitter, microbeads- something of a diameter $d \ll D_{tube}$ or explore the ratio of these two
- Good not to dissolve to see the effect and reproduce data with same particles
- Articles suggest that we should use **concetration of particles** 0.05-0.4

Force analysis

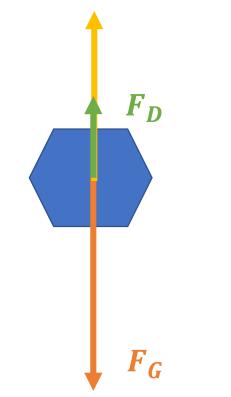

Drag force for small speeds, no turbulence (i.e. low Reynolds number $R_e < 1$), Stokes force can be used :

 $F_D = -6\pi\eta r v$

 η is viscosity of fluid, r radius of a sphere, v speed of a piece.

Relevant parameter: FLUID VISCOSITY Relevant parameter: PARTICLE RADIUS

Viscosity as a key parameter


https://en.wikipedia.org/w iki/Viscosity

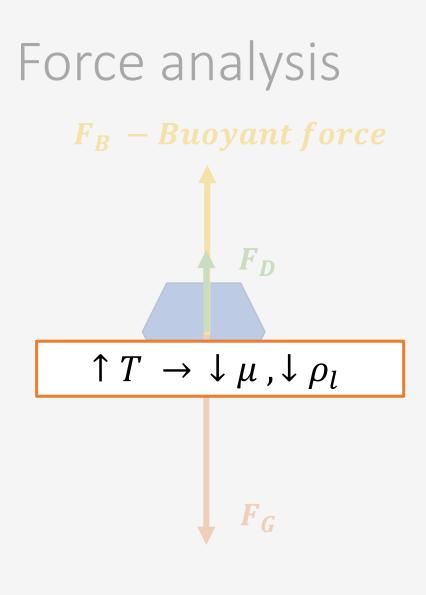
$$\tau = \mu \frac{\partial u}{\partial y}$$

 μ is the dynamic viscosity of a liquid

Change the liquids (see-though) Water (1.0016 Pa.s), Oils (0.8-3 Pa.s), Glycerol (1.412 Pa·s)

Force analysis

F_B – Buoyant force

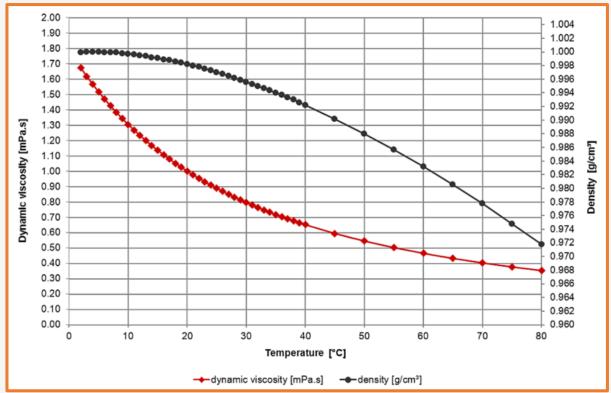


Buoyancy - Archimedes force

 $F_B = -\rho_l V g$

 ρ_l is the liquid density, *V* Volume of a particle.

RELEVANT PARAMETER: Density of the liquid



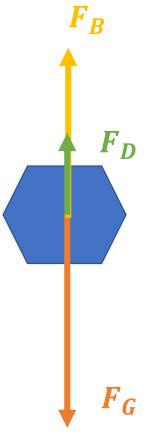
Buoyancy - Archimedes force

$$F_B = -\rho_l V g$$

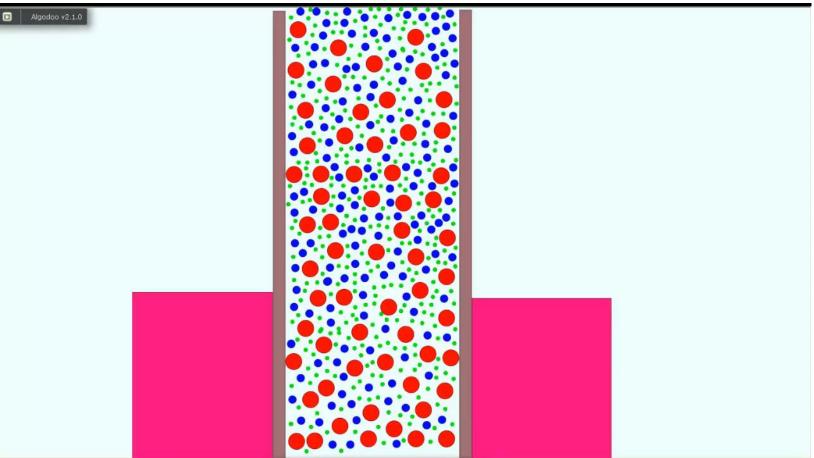
 ρ_l is the liquid density, V Volume of a particle.

https://wiki.anton-paar.com/fileadmin/wiki/images/viscosity/water.png

Differential equation


$$ma = F_{G} - F_{B} - F_{D}$$

$$m\frac{dv}{dt} = mg - \rho_{l}gV - bv \qquad b = 6\pi\eta r$$


$$v(t) = \frac{(\rho - \rho_{l})Vg}{b} \left(1 - e^{-\frac{bt}{m}}\right)$$

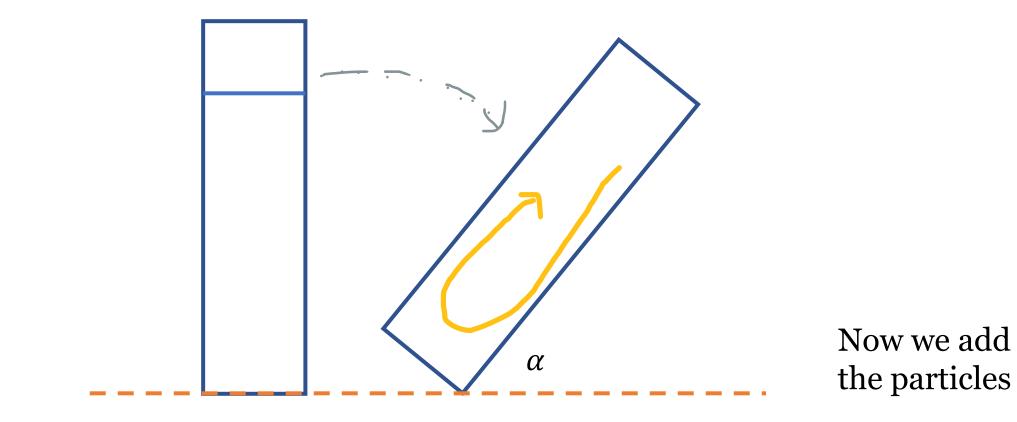
$$v_{terminal} \rightarrow const = \frac{(\rho - \rho_{0})Vg}{6\pi\eta r}$$

As we don't have to have spheres – need to
experimentally verify
$$v(t)$$
 by tracking the particles

Visualisation for different radii

https://www.youtube.com/watch?v=9XFTqcw1tX0

As the speed of the particles depends on their radius, the biggest particles are the one with the highest speed.


$$v_t = \frac{(\rho - \rho_0) Vg}{6\pi\eta r}$$

$$\uparrow r$$
 , $\uparrow v_t$

Nice to play with - Software **Algodoo**, where you can add viscosity and different shapes or particles.

With tilt

Fluid currents

Convection created by particles

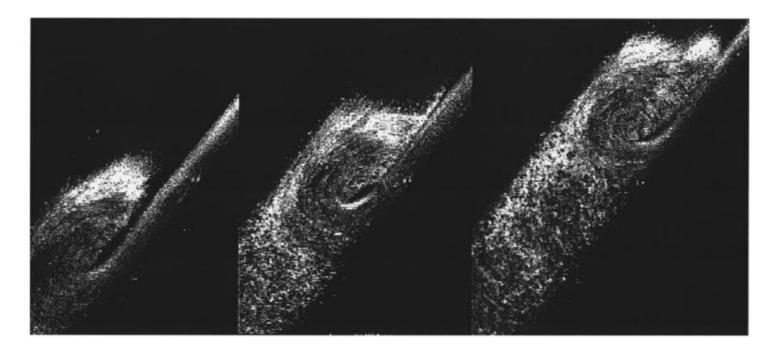
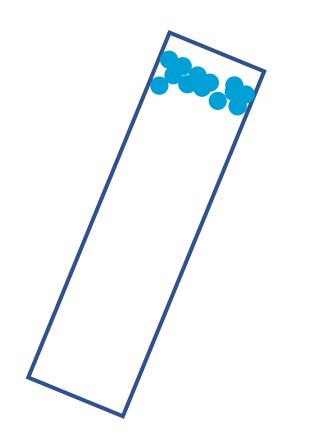
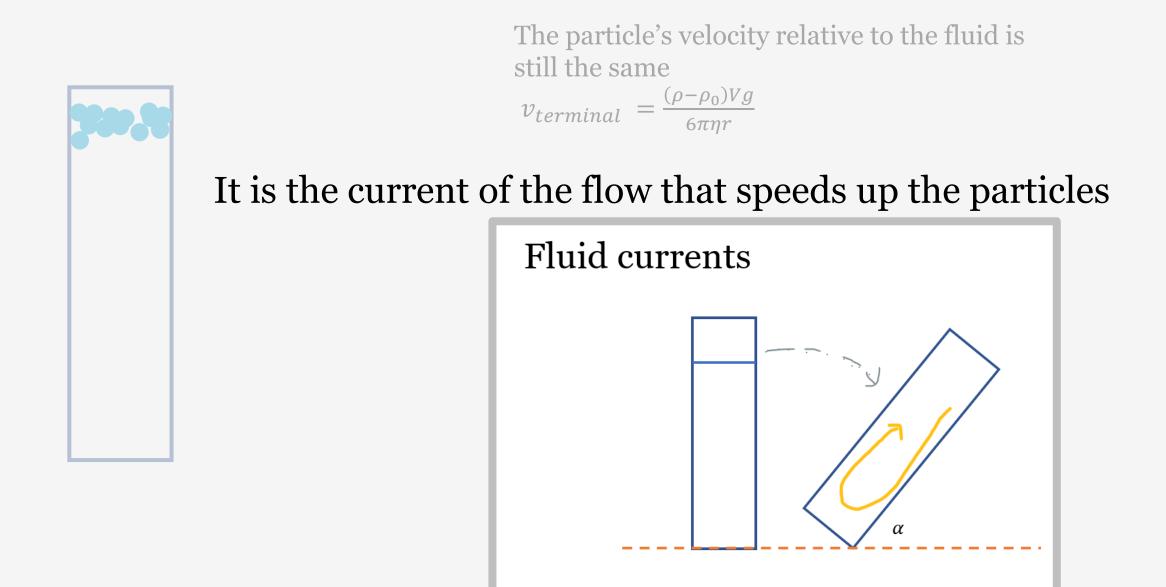
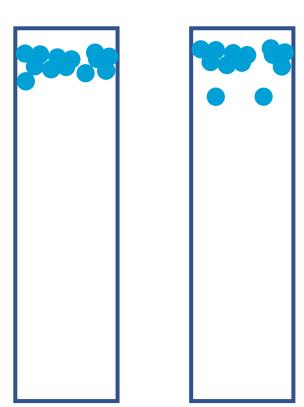



FIG. 2. A sequence of snapshots at 20-ms intervals of the convective roll in an inclined tube of granulate. The flow is from right to left.


http://jacques-duran.fr/images/articles/granular-boycott-effect.pdf

Maybe recreate this to visualise the movement of the water with some light fluorescent granulate The particle's velocity relative to the fluid is still the same


 $v_{terminal} = \frac{(\rho - \rho_0)Vg}{6\pi\eta r}$

 $https://www.researchgate.net/figure/Settling-in-a-well-a-Settling-in-a-vertical-section-b-Boycott-settling_fig1_346515900$

https://www.researchgate.net/figure/Settling-in-a-well-a-Settling-in-a-vertical-section-b-Boycott-settling_fig1_346515900

The particle's velocity relative to the fluid is still the same

 $v_{terminal} = \frac{(\rho - \rho_0)Vg}{6\pi\eta r}$

It is the current of the flow that speeds up the particles

Observation

Material does not fall uniformly the upper part of the packed material remains relatively stationary, while the lower part falls first.

Key point:

Particles start to settle down

induce the development of convective motion as they form the "regions"

 $https://www.researchgate.net/figure/Settling-in-a-well-a-Settling-in-a-vertical-section-b-Boycott-settling_fig1_346515900$

Regions

- There are effectively at least **three** characteristic regions to account for
- They have different densities thus different <u>hydrostatic</u> and <u>gravitational</u> forces act on them

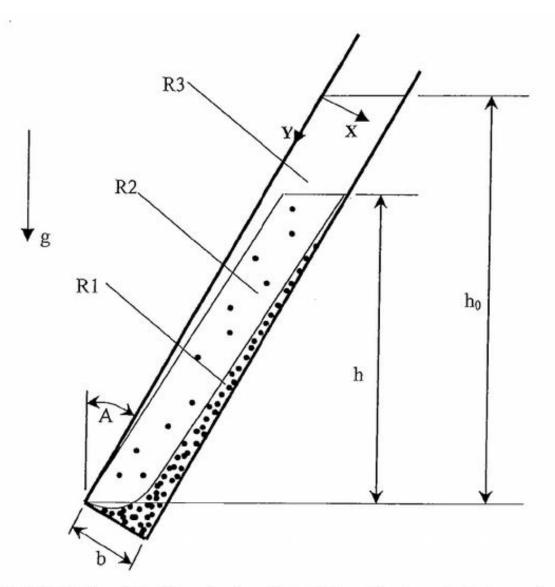
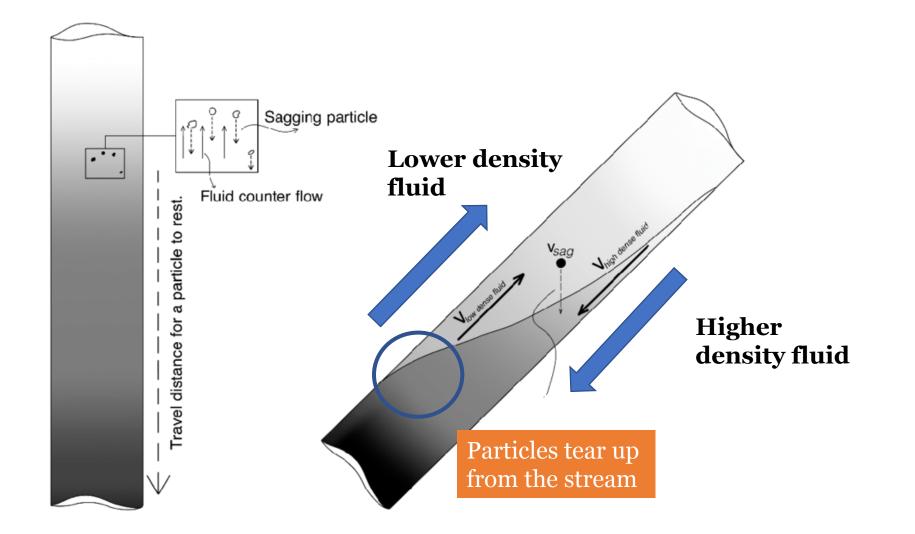



Figure 1. Illustration of the different regions for particles settling in an inclined container.

Density difference

The particles tear form the upward stream

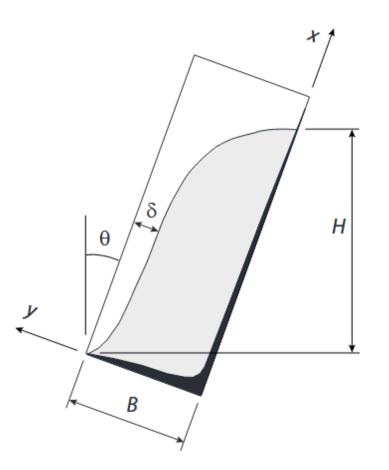
Makes the upward going fluid more <u>buoyant</u>

https://www.youtube.com/watch?v=i1 oA8B83180

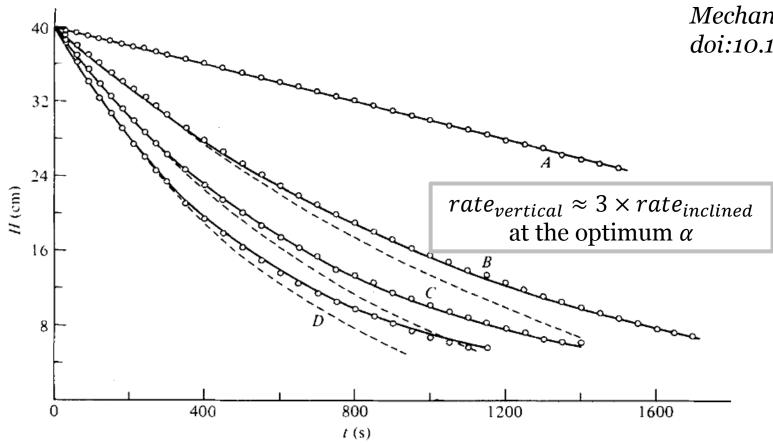
Can we quantitavely explain this phenomenon?

Figure 1. Illustration of the different regions for particles settling in an inclined container.

PNK theory (~1925)


$$\frac{dH}{dt} = -v_0 \left(1 + \frac{h}{B} \sin\theta \right)$$

Where v_0 is the suspension interface velocity (in R2)


The rate of increased by factor $\frac{h}{B}sin\alpha$.

Futher reading

https://people.eng.unimelb.edu.au/daltonh/biblio graphy/downloads/dhispsec03.pdf

Dependence on the angle

Acrivos, A., & Herbolzheimer, E. (1979). Enhanced sedimentation in settling tanks with inclined walls. Journal of Fluid Mechanics, 92(03), 435. doi:10.1017/s0022112079000720

> Note to keep the particle concentration constant in one experiment

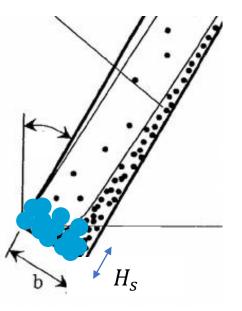
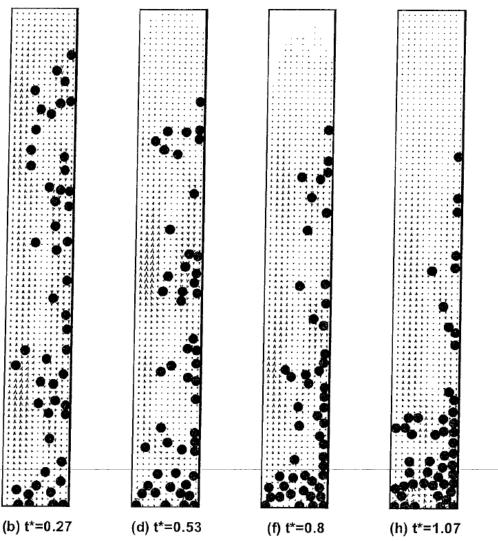


FIGURE 4. Height of the top interface H versus time for $c_0 = 0.10$, $H_0 = 40$ cm, and b = 5 cm $(\Lambda_0 = 3.27 \times 10^7, R_0 = 0.560)$ for different angles of inclination α : A, $\alpha = 0^\circ$; B, $\alpha = 20^\circ$; C, $\alpha = 35^\circ$; D, $\alpha = 50^\circ$, ordinary PNK theory; _____, PNK predictions accounting for the sediment layer.

$$\begin{split} R &\equiv l\rho_f u_0/\mu = \frac{2}{9} l \, a^2 \rho_f (\rho_s - \rho_f) \, g/\mu^2, \\ \Lambda &= l^2 g(\rho_s - \rho_f) \, c_0/u_0 \, \mu = \frac{9}{2} (l/a)^2 \, c_0, \end{split}$$


Further reading (free access)

Numerical Simulations of the BE

https://www.researchgate.net/publicat ion/232849633 A Numerical Simula tion_of_the_Boycott_Effect

Their computations suggest-For angles with inclination higher than 45° settling rate is <u>slower</u> and global convection becomes <u>weaker</u> – it's due to the weaker driving force (gravitational)

Further reading

https://www.researchgate.net/publication/232005098 The stratified Boycott ef <u>fect</u>

Palma, Sergio, et al. "Characterization of a Sediment Layer of Concentrated Fluid-Solid Mixtures in Tilted Ducts at Low Reynolds Numbers." Powder Technology, Elsevier, 3 Nov. 2017,

www.sciencedirect.com/science/article/pii/S0032591017308495.

Peacock, Tom, et al. "The Stratified Boycott Effect." Journal of Fluid Mechanics, vol. 529, 2005, pp. 33–49., doi:10.1017/s002211200500337x.

The Editors of Encyclopaedia Britannica. "Stokes's Law." Encyclopædia Britannica, Encyclopædia Britannica, Inc., 11 Apr. 2016, www.britannica.com/science/Stokess-law.

Baranets, Vitaliia, and Natalya Kizilova. "Mathematical Modeling of Particle Aggregation and Sedimentation in the Inclined Tubes." Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 2019, periodicals.karazin.ua/mech_math/article/view/14948.

To Do

What to do with the problem?

Easy level

- Straightforward experiments, changing parameters
- Measuring the speeds from videos, dependence on the angle $v(\alpha)$, viscosity, density of the fluid, investigate particle concentration, <u>find</u> the optimum angle.

More advanced

- Some theoretical model to compare your results with experiments
- Look over some theoretical simulations available in articles (<u>https://www.researchgate.net/publication/232849633 A Numerical</u> <u>Simulation_of_the_Boycott_Effect~</u> and others...)
- Add things like adhesion and cohesion between the particles

Good luck 🕲